SECTION 5—ELECTRONICS TECHNOLOGY | 5.1 | Electronic Components 5-3 | |-----|---| | 5.2 | Electronic Materials 5-5 | | 5.3 | Fabrication Equipment 5-7 | | 5.4 | General Purpose Electronic Equipment 5-11 | | 5.5 | Microelectronics 5-13 | | 5.6 | Opto-Electronics 5-17 | #### **OVERVIEW** The array of technologies covered in Section 5.0 is related to Microelectronics (General Purpose Integrated Circuits), Opto-Electronics, Electronic Components, General Purpose Equipment, Fabrication Equipment, and Materials. Militarily critical technologies include materials and techniques that enable the extreme density and high performance, with low power, of Very Large Scale Integrated Circuits (VLSI), Ultra Large Scale Integrated Circuits (ULSI), and Very High-Speed Integrated Circuits (VHSIC). These technologies also include microwave/millimeter wave tubes, integrated circuits and devices, manufacturing equipment, and materials. Computer aided design, manufacturing and test (CAD/CAM/CAT) capabilities to turn out practical working systems in a timely and efficient manner are companion capabilities which must keep pace to allow the effective use of these critical technologies. The performance of processors and capacity of memory chips has doubled every 18 months since 1970. Other semiconductor chips have followed this pattern. This exponential growth is expected to continue until 2005. As the count of transistors on a chip continues to grow exponentially, the cost of building a top-of-the-line chip fabrication plant has also risen because of the higher costs associated with the increasingly exotic facilities and tools need to etch finer and finer lines on a chip. By that time, the price per transistor is expected to bottom out. Each new generation of chips will continue to produce a smaller return on investment and there will no longer be an economic incentive for making transistors smaller. The huge investment required for new fabrication plants will result in the realignment of today's chip manufacturers. There are many joint ventures being formed between U.S. and Japanese to share the huge investment required for new fabrication plants. This trend is expected to continue and the end of some of today's chip manufacturers is expected because there won't be a business case for many new multi-billion dollar fabrication plants after 2005. # **SECTION 5.1—ELECTRONIC COMPONENTS** #### **OVERVIEW** Arrays of electronic components include technologies to design and build microwave tubes, solid-state microwave/millimeter wave, superconducting electronics and acoustic wave devices. These technologies are being supported by a current Tri-Service Vacuum Electronics Initiative R&D program for microwave tubes and the DoD Electronics Technology Program for solid-state devices. Electronic devices are vital components in most military systems. Their use includes computers, missiles, avionics, electronic attack (EA), early warning radars, guided munitions, and satellites. The microwave tube, acoustics, and superconducting technologies are unique enabling technologies in that no alternative technology can be substituted for some power and frequency regimes. At present this is limited dual-use technology and military use is 80 percent of the U.S. consumption. Table 5.1-1. Electronic Components Militarily Critical Technology Parameters | TECHNOLOGY | Militarily Critical Parameters
Minimum Level to Assure US
Superiority | Critical Materials | Unique Test,
Production, and
Inspection
Equipment | Unique Software and Parameters | Control
Regimes | |---|---|---|--|---|------------------------------------| | TRAVELING WAVE TUBES, PULSED OR CONTINUOUS WAVE | Operating frequency higher than
46 GHz
Having a cathode heater element
which has a turn-on time
< 3 seconds to rated RF power | Tungsten wire
tape,
Molybdenum
wire tape,
APBN Boron
Nitride Rods,
Cathode Nickel | None identified | CAD of gun,
collector and
circuit | WA IL Cat 3
WA ML 11
MTCR 11 | | COUPLED CAVITY TUBES, OR DERIVATIVES THEREOF | An "instantaneous bandwidth" > 10% or a peak power > 50 kW. | 70/30
Cupronickel
Cathode nickel | None identified | None identified | WA IL Cat 3
WA ML 11
MTCR 11 | | HELIX TUBES,
OR
DERIVATIVES
THEREOF | "bandwidth" > one octave, and average power times frequency > 2 (kW-GHz); "bandwidth" ≤ one octave, and average power times frequency > 4 (kW-GHz) | Tungsten wire
tape,
Molybdenum
wire tape
APBN Boron
Nitride Rods
Cathode Nickel | None identified | CAD of gun,
collector and
circuit | WA IL Cat 3
WA ML 11
MTCR 11 | | CROSS-FIELD
AMPLIFIER
TUBES | A gain > 17 dB or noise figure
< 35 dB | Corning 77 Glass Rhenium tungsten wire | None identified | None identified | WA IL Cat 3
WA ML 11
MTCR 11 | | IMPREGNATED
CATHODES FOR
ELECTRONIC
TUBES | Having a turn on time to rated emission of less than 3 seconds; or Producing a continuous emission current density at rated operating conditions exceeding 10 A/cm ² | None identified | None identified | CAD of electron gun | WA IL Cat 3
WA ML 11
MTCR 11 | | MICROWAVE
POWER
AMPLIFIERS
CONTAINING
TUBES | Operate above 3 GHz or output
power density exceeding 80 W/kg
and volume < 400 cubic centimeters | None identified | None identified | CAD of gun,
collector and
power supply
circuit | WA IL Cat 3
WA ML 11
MTCR 11 | | ACOUSTIC WAVE DEVICES - BULK | Frequency ≥ 1 GHz | None identified | None identified | None identified | WA IL Cat 3
WA ML 11
MTCR 11 | Table 5.1-1. Electronic Components Militarily Critical Technology Parameters (Continued) | TECHNOLOGY | Militarily Critical Parameters
Minimum Level to Assure US
Superiority | Critical Materials | Unique Test,
Production, and
Inspection
Equipment | Unique Software and Parameters | Control
Regimes | |--|---|--|---|---|------------------------------------| | ACOUSTIC WAVE DEVICES - SURFACE WAVE | Frequency > 1 GHz
Sidelobe > 55 DB | None identified | Sub-micron
photolithographic
equipment | Unique CAD
tools needed
for high
performance | WA IL Cat 3
WA ML 11
MTCR 11 | | MICROWAVE/MI
LLIMETER
WAVE
INTEGRATED
CIRCUITS
(MMIC) | Frequency > 3 GHz | None identified | Automatic on-chip
testers; automated
fabrication
equipment for high-
volume production,
automatic network
analyzer | Unique CAD,
CAM, CAE
software
needed | WA IL Cat 3
WA ML 11
MTCR 11 | | MICROWAVE/
MILLIMETER
WAVE
TRANSISTORS | Frequency > 40 GHz | GaAs or other III/V or II/VI materials | Automatic network
analyzers, on-chip
testers, fabrication
equipment,
especially for
sub-micron
geometries and
large volume
production | Unique
software is
needed to
design devices | WA IL Cat 3
WA ML 11
MTCR 11 | # **SECTION 5.2—ELECTRONIC MATERIALS** ## **OVERVIEW** This technology area includes the preparation and processing of new and current electronic and Opto-Electronic (OE) materials from the purification of the basic elements to the final wafer or substrate material ready for device fabrication. Materials handling and their processes are currently undergoing rapid changes to meet the future demands of the electronic industry. These materials are made of very pure starting materials. Preparation methods are numerous, depending on the material under consideration, liquid state preparation (separation of liquid metals), and the making of gases used in the compounding of crystal-starting materials or in epitaxial growth (hydrides, halides, anometallic compounds, and use of pure elemental gases). Table 5.2-1. Electronic Materials Militarily Critical Technology Parameters | TECHNOLOGY | Militarily Critical Parameters
Minimum Level to Assure US
Superiority | Critical Materials | Unique Test,
Production, and
Inspection
Equipment | Unique Software
and Parameters | Control
Regimes | |--|---|--|---|---|--| | HETERO- EPITAXIAL MATERIALS WITH EPITAXIALLY GROWN LAYERS OF SILICON, GERMANIUM, III/V COMPOUNDS OR II/VI COMPOUNDS. | Capability to produce hetero- epitaxial materials consisting of a "substrate" with stacked low defect density epitaxially grown multiple layers of Silicon, Germanium, III/V or II/VI compounds to a flatness of ± 3 to 5% across 75 mm or less than ± 50 angstroms across 400 mm | Hetero-epitaxial materials with epitaxially grown layers of Silicon, Germanium, III/V compounds or II/VI compounds. Metal-organic compounds and hydrides used as precursors. | MOCVD (Metal
Organic Chemical
Vapor Deposition)
and MBE
(Molecular Beam
Epitaxy) epitaxial
growth equipment.
Bulk and surface
lifetimes for ultra-
thin film testing | Special algorithms are used to control the growth process of the materials. | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | | RESIST
MATERIALS | Positive resist optimized for use at wavelengths < 400 nm E-beam or Ion-beam resist with sensitivity of > 0.01 microcoulomb/mm² X-ray resist with sensitivity of 2.5 mJ/mm² Resist optimized for surface imaging technologies, and silyated resist. | Light sensitive
polymers for use
at wavelengths
< 400 mm,
polymers
sensitive to
exposure by,
E-beam, X-ray
and ion beam. | Spectroscopic ellipsometer, spectrophotometer. Equipment for: defect detection and classification, viscosymeters; interferometeric measurement equipment. | None identified | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | | METAL
ORGANIC
COMPOUNDS | Metal-organic compounds of aluminum, gallium, indium, arsenic or antimony or organic compounds of phosphorus, having a purity better than 99.999 %. | Metal-organic compounds of aluminum, gallium, indium, arsenic or antimony or organic compounds of phosphorus, having a purity better than 99.999%. | Optical spectroscopy | Special algorithms are used to control the synthesis of the materials. | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | **Table 5.2-1. Electronic Materials Militarily Critical Technology Parameters (Continued)** | TECHNOLOGY | Militarily Critical Parameters
Minimum Level to Assure US
Superiority | Critical Materials | Unique Test,
Production, and
Inspection
Equipment | Unique Software
and Parameters | Control
Regimes | |---|--|--|---|--|--| | HYDRIDES | Hydrides of phosphorus, arsenic or antimony, having a purity > 99.999%, even diluted in neutral gases. | Hydrides of phosphorus, arsenic or antimony, having a purity > 99.999%, even diluted in neutral gases. | Optical spectroscopy | Special algorithms
are used to control
the growth process
of the materials. | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | | SUBSTRATE
MATERIALS
OF DIAMOND,
ALUMINA,
SILICON AND
POLYSILICON | Substrate thickness uniformity < ± 2.5 % across 75 mm | Diamond,
Alumina, Silicon
and Polysilicon. | Spectroscopic ellipsometer, spectrophotometer. Mechanical lapping and polishing equipment. Electrochemical polishing. Interfero- metric flatness measurement equipment. Resistance measurement equipment. | Special algorithms are used to control the growth process of the materials. | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | ## **SECTION 5.3—FABRICATION EQUIPMENT** #### **OVERVIEW** This subsection covers semiconductor processing equipment used to fabricate devices used in military systems (the same process is used in commercial fabrication). Semiconductor processing technology involves the formation of monocrystalline ingots of silicon, sapphire, or gallium compounds which are then sliced into wafers 400–750 microns thick for further processing. This involves the growth of epitaxial layers, implantation of dopants, deposition of thin film layers, delineation of patterns using lithographic techniques, etching, testing, and packaging of integrated circuits (ICs), passive and active devices, and sensors used in military equipment and systems. Microcircuit technology, both hybrid and monolithic, requires sophisticated design and manufacturing equipment technologies to produce integrated, solid-state circuits in which complex electronic functions are obtained using silicon and III/V and II/VI compound semiconductors as the basic material. Table 5.3-1. Fabrication Equipment Militarily Critical Technology Parameters | TECHNOLOGY | Militarily Critical Parameters
Minimum Level to Assure US
Superiority | Critical Materials | Unique Test,
Production, and
Inspection
Equipment | Unique Software and Parameters | Control
Regimes | |--|---|--|---|--|--| | EPITAXIAL
GROWTH
EQUIPMENT | Capable of producing a layer thickness uniform to < ± 2.5% across 75 mm | Surface finish,
hardness and
chemical inertness of
metal components;
outgassing properties
and dimensional
stability of system
parts | Spectroscopic ellipsometer; spectrophotometer. Equipment for: defect detection and classification; film thickness and uniformity control | Specially
designed
algorithms for
process control | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | | MOLECULAR
BEAM EPITAXY
EQUIPMENT
(MBE) | Capable of producing a layer thickness uniform to < ± 1.5% across 75 mm of III-V or II-VI compound structures; Hall mobility of 200,000 cm²/V-se. for GaAs; Defect density < 100 oval defects/cm² | Surface finish, hardness and chemical inertness of metal components; outgassing properties and dimensional stability of system parts; and solid (effusion cells) and gas sources | Real time closed-
loop in situ
automated process
control; defect
detection and
classification; film
thickness and
uniformity control | Specially
designed
algorithms for
process control | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | | METAL ORGANIC
CHEMICAL
VAPOR
DEPOSITION
EQUIPMENT
(MOCVD) | Capable of producing a layer thickness uniform to < ± 2.5% across 75 mm of III-V or II-VI compound semiconductor structures | Surface finish,
hardness and
chemical inertness of
metal components;
outgassing properties
and dimensional
stability of system
parts; and high purity
(metal organic gas
sources. | Real time closed-
loop in situ
automated process
control; defect
detection and
classification; film
thickness and
uniformity control | Specially
designed
algorithms for
process control | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | Table 5.3-1. Fabrication Equipment Militarily Critical Technology Parameters (Continued) | Unique Test, | | | | | | |--|---|---|---|--|--| | Technology | Militarily Critical Parameters
Minimum Level to Assure US
Superiority | Critical Materials | Production, and
Inspection
Equipment | Unique Software and Parameters | Control
Regimes | | ION IMPLANTATION EQUIPMENT | Accelerating voltage > 200 keV Optimized to operate at an accelerating voltage of < 10 keV. Direct write capability; or High energy implant into a heated substrate. | Surface finish,
hardness and
chemical inertness of
metal components;
outgassing properties
and dimensional
stability of system
parts | SEM. (Scanning Electronic Microscope) Equipment for: beam current and energy control; temperature control; defect detection and classification. | Specially
designed
algorithms for
process control | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | | PLASMA DRY ETCH EQUIPMENT WITH CASSETTE- TO-CASSETTE OPERATION AND LOADLOCKS | Etch capability of feature sizes < 0.7 microns; Etch profile slope > 60 degrees; Aspect ratio > 3:1; Nitride/Oxide selectivity > 4:1. | Surface finish,
hardness and
chemical inertness of
metal components;
outgassing properties
and dimensional
stability of system
parts | SEM (Scanning Electronic Microscope) Equipment for: defect detection and classification; plasma induced damage control; wafer tracking and transport. | Specially
designed
algorithms for
process control | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | | PLASMA DRY ETCH EQUIPMENT/ CLUSTER TOOLS | Etch capability of feature sizes < 0.7 microns. Etch profile slope > 60 degrees. Aspect ratio > 3:1. Nitride/Oxide selectivity > 4:1. | Surface finish,
hardness and
chemical inertness of
metal components;
outgassing properties
and dimensional
stability of system
parts | SEM (Scanning Electronic Microscope) Equipment for: defect detection and classification; plasma induced damage control; wafer tracking and transport. | Specially
designed
algorithms for
process control | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | | PLASMA ENHANCED CVD EQUIPMENT/ CLUSTER TOOLS. | Deposition of tungsten films. Deposition of Boron Phosphide Silicon Glass at > 475 °C. Deposition uniformity better than 3–5% across 150 mm. | High purity source gases | Spectroscopic ellipsometer; spectrophotometer. Equipment for: defect detection and classification; | Specially
designed
algorithms for
process control | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | | CLUSTER TOOLS | Integrated automatic loading multi-chamber central wafer handling systems, having interfaces for wafer input/output. With more than two process modules. Single wafer and sequential multiwafer processing. | None identified | Equipment for:
defect detection
and classification;
wafer tracking and
transport;
communication
standardization. | Specially
designed
algorithms for
process control | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | | LITHOGRAPHY EQUIPMENT INCLUDING PHOTO-OPTICAL, X-RAY, AND E-BEAM. | Light source wavelength < 400 nm or capable of producing a pattern with a resolvable feature size of < 0.7 microns. | Temperature stability,
surface finish, optical
durability. E-
beam/lon-beam
source emissivity. | Equipment for:
defect detection
and classification;
feature size
metrology. | Specially
designed
algorithms for
process control | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | Table 5.3-1. Fabrication Equipment Militarily Critical Technology Parameters (Continued) | Technology | Militarily Critical Parameters
Minimum Level to Assure US
Superiority | Critical Materials | Unique Test,
Production, and
Inspection
Equipment | Unique Software and Parameters | Control
Regimes | |---|--|--|--|---|--| | E-BEAM MASK
AND RETICLE
MAKING
EQUIPMENT. | Masks capable of producing a pattern with a resolvable feature size of < 1.0 microns. Spot size < 0.2 microns. Overlay accuracy better than ± 0.20 microns (3 sigma). | None identified | SEM; (Scanning
Electronic
Microscope)
Equipment for:
defect detection
and classification;
feature size
metrology. | Specially
designed
algorithms for
process control | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | | SEMICONDUCTO
R TEST
EQUIPMENT | S-parameters of transistors above 31 GHz. Truth testing IC's at a pattern rate > 60 MHz. Testing microwave ICs at frequencies > 3 GHz. Contactless E-beam test systems for operation below 3 keV. | None identified | Equipment for:
defect detection
and classification;
communication
standardization. | Specially
designed
algorithms for
process control | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | | PACKAGING AND
BONDING
EQUIPMENT | Bond pitches < 6 mils. Bonding speed of > 10 wires/sec. Loop heights < 7.5 mils. | Small diameter metallurgically controlled gold/alloy wire, ceramic substrates, sealing compounds, capillary materials, lead frames and ball grid area(BGA) materials. | Equipment for:
defect detection
and classification;
nondestructive
testing. | Specially
designed
algorithms for
process control | None | | HETERO- EPITAXIAL MATERIALS WITH EPITAXIALLY GROWN LAYERS OF SILICON, GERMANIUM, III/V COMPOUNDS OR II/VI COMPOUNDS | Capability to produce hetero-
epitaxial materials consisting
of a "substrate" with stacked
low defect density epitaxially
grown multiple layers of
Silicon, Germanium, III/V or
II/VI compounds of ± 3 to 5%
across 75 mm | Hetero-epitaxial materials with epitaxially grown layers of Silicon, Germanium, III/V compounds or II/VI compounds. Metal-organic compounds and hydrides used as precursors. | MOCVD and MBE
epitaxial growth
equipment | Specially
designed
algorithms are
used to control
the growth
process of the
materials | WA IL Cat
3
WA ML 11
MTCR 11,
14, 18, 22 | # SECTION 5.4—GENERAL PURPOSE ELECTRONIC EQUIPMENT ## **OVERVIEW** This subsection covers general purpose electronic equipment that supports operational military systems. The equipment includes precision time and frequency standards; frequency synthesizers which are derived from precise standards and serve as stable sources for encrypted communication, radar and navigation systems, and various signal analyzers and digitizers that permit collection and analyses of data from enemy weapon systems and information links. Magnetic recording equipment permits permanent records of the collected data. Table 5.4-1. General Purpose Electronic Equipment Militarily Critical Technology Parameters | | | | Unique Test, | | | |------------------|---|--------------------|--|--------------------------------|--------------------| | TECHNOLOGY | Militarily Critical Parameters
Minimum Level to Assure US
Superiority | Critical Materials | Production, and
Inspection
Equipment | Unique Software and Parameters | Control
Regimes | | DIGITIZER, | Digitizing rate of 200 million | None identified | None identified. | None identified | WA IL Cat 3 | | WAVEFORM | samples/sec. and a resolution of | | Commercially | | | | | 10 bits or more, and a continuous | | produced | | | | | throughput of 2 Gbit/sec or more | | equipment. | | | | STANDARD, | Long term stability | None identified | None identified | None identified | WA IL Cat 3 | | FREQUENCY, | >1 x 10 ⁻¹¹ /month | | Equipment is | | | | ATOMIC | | | produced | | | | | | | commercially | | | | RECORDERS, | Transfer rate > 175 Mbit/s. | None identified | None identified | None identified | WA IL Cat 3 | | DIGITAL | | | | | | | INSTRUMENTATION | | | | | | | MAGNETIC TAPE | | | | | | | RECORDERS, | Transfer rate > 175 Mbit/s. | None identified | None identified | None identified | WA IL Cat 3 | | DIGITAL | | | | | | | CONVERSION | | | | | | | EQUIPMENT | | | | | | | FREQUENCY | Switching time < 1 ms., or SSB | None identified | None identified | None identified | WA IL Cat 3 | | SYNTHESIZERS- | phase noise better than (126 + | | | | | | ASSEMBLIES | 20 log ₁₀ F -20 log ₁₀ f) in dBc/Hz | | | | | | | (F is offset from operating | | | | | | | frequency in Hz, and f is the | | | | | | | operating frequency in MHz) | | | | | | FREQUENCY | Operating frequency > 1 GHz | None identified | None identified | None identified | WA IL Cat 3 | | SYNTHESIZERS- | and switching time < 1 ms., or | | | | | | SIGNAL | SSB phase noise better than - | | | | | | GENERATOR | $(126 + 20 \log_{10} F - 20 \log_{10} f)$ in | | | | | | | dBc/Hz (F is offset from operating | | | | | | | frequency in Hz; | | | | | | | f is the operating frequency in | | | | | | | MHz) | | | | | | ANALYZER, | Operating frequency > 1 GHz | None identified | None identified | None identified | WA IL Cat 3 | | SIGNAL, SCANNING | | | | | | | ANALYZER, | Real time bandwidth > 25.6 kHz | None identified | None identified | None identified | WA IL Cat 3 | | DYNAMIC | | | | | | # **SECTION 5.5—MICROELECTRONICS** #### **OVERVIEW** This section covers microcircuits [including General Purpose Integrated Circuits (IC)], hybrid microcircuits, and MMIC (millimeter/microwave IC), which are a subset of microcircuits and includes hybrid MMIC and monolithic MMIC operating at frequencies greater than 30 GHz. Also covered are integrated circuit design and evaluation testing involving Computer Aided Design (CAD) of integrated circuit packages. Electronic packaging technologies are required to achieve the inherent high speed, high power, and severe environment of the basic building block microcircuits. Table 5.5-1. Microelectronics Militarily Critical Technology Parameters | TECHNOLOGY | Militarily Critical Parameters
Minimum Level to Assure US
Superiority | Critical Materials | Unique Test,
Production, and
Inspection
Equipment | Unique Software and Parameters | Control
Regimes | |---|--|---|--|--|--------------------| | RAD-HARD
INTEGRATED
CIRCUITS | ≥ 5 × 10 ⁶ Rads(Si) Total dose
or
≥ 5 × 10 ⁸ Rads(Si)/sec dose
rate | Wafer flatness, min.
defects and
uniformity for
advanced ICs | Dielectric Isolation,
deep implant on SOS
and SOI, controlled
doping, surface
passivation and
controlled radiation
testing | Computer modeling software. Pre and post radiation modeling. SEU (Single Event Upset) models. | WA IL Cat 3 | | TEMPERATURE-
RATED
INTEGRATED
CIRCUITS | Capability of operation at either temperature extreme or over the specified temperature range of –55 °C to + 125 °C. | Ceramic substrates | None identified | Thermal
analysis
models | WA IL Cat 3 | | GENERAL
PURPOSE
MICROPROCES
SORS | ALU ≥ 32 Bits
CTP ≥ 80 MTOPS
Frequency ≥ 80 MHz | Wafer flatness, min.
defects and
uniformity for
advanced ICs | Lithography, Epitaxy,
Deposition masks and
resists for High
Density chips
High Speed Testing
equipment | HDL (High-
Level
Development
Language)
CAE and ATE | WA IL Cat 3 | | DIGITAL
SIGNAL
PROCESSORS
(DSP) | 1024 point complex FFT ≤ 1 msec 100 mFLOPS Data bus ≥ 16 bits | Wafer flatness, min.
defects and
uniformity for
advanced ICs | Lithography, Epitaxy,
Deposition masks and
resists for High
Density chips
High Speed Testing
equipment | Simulation and modeling HDL (High-Level Development Language) CAE and ATE | WA IL Cat 3 | | ARTIFICIAL
NEURAL
NETWORK
(ANN) ICS | 400,000 pixels/chip for graphics, 100,000 connections per sec. | Wafer flatness, min.
defects and
uniformity for
advanced ICs | Lithography, Epitaxy,
Deposition masks and
resists for High
Density chips
High Speed Testing
equipment | Training algorithms Simulation algorithms Simulation and modeling HDL (High- Level Development Language) CAE and ATE | WA IL Cat 3 | **Table 5.5-1. Microelectronics Militarily Critical Technology Parameters (Continued)** | _ | | | Unique Test, | | | |--|---|--|---|---|--------------------| | TECHNOLOGY | Militarily Critical Parameters Minimum Level to Assure US Superiority | Critical Materials | Production, and
Inspection
Equipment | Unique Software and Parameters | Control
Regimes | | A/D CONVERTER | 8 to 12 bits - 10 nanosec
12 bits - 2 microsec
≥ 12 bits - 5 microsec | Wafer flatness, min.
defects and
uniformity for
advanced ICs | Lithography, Epitaxy,
Deposition masks and
resists for High
Density chips
High Speed Testing
equipment | Simulation and modeling HDL (High-Level Development Language) CAE and ATE | WA IL Cat 3 | | D/A CONVERTER | ≥ 12 bits - ≤ 100 ns | Wafer flatness, min.
defects and
uniformity for
advanced ICs | Lithography, Epitaxy, Deposition masks and resists for High Density chips High Speed Testing equipment | Simulation and
modeling
HDL (High-
Level
Development
Language)
CAE and ATE | WA IL Cat 3 | | GALLIUM
ARSENIDE ICS | ≥ 5000 equivalent (2 input) gates ≥ 1 GHz toggle frequency | GaAs Epitaxial Wafers Wafer flatness, min. defects and uniformity for advanced ICs | Lithography, Epitaxy, Deposition masks and resists for High Density chips High Speed Testing equipment Chip probing Modified for GaAs - including MBE | Simulation and
modeling
HDL (High-
Level
Development
Language)
CAE and ATE | WA IL Cat 3 | | FIELD
PROGRAMMABLE
DEVICES | 25,000 usable gates
(realizable)
133 MHz | Wafer flatness, min.
defects and
uniformity for
advanced ICs | Lithography, Epitaxy,
Deposition masks and
resists for High
Density chips
High Speed Testing
equipment | Standard Cell
S.W.
Simulation and
modeling
HDL (High-
Level
Development
Language)
CAE and ATE | WA IL Cat 3 | | ASICS (CUSTOM
INTEGRATED
CIRCUITS) | 0.35 ns gate delay
180 pins | Wafer flatness, min.
defects and
uniformity for
advanced ICs | Lithography, Epitaxy,
Deposition masks and
resists for High
Density chips
High Speed Testing
equipment
Chip probing | Standard Cell
S.W.
Simulation and
modeling
HDL (High-
Level
Development
Language)
CAE and ATE | WA IL Cat 3 | | MEMORY ICS; - SRAMS; - COMPOUND SEMICONDUCTOR MEMORIES | Memory capacity and maximum access time. SRAM ≥ 4 mbits ≤ 10 ns | Wafer flatness, min.
defects and
uniformity for
advanced ICs | Lithography, Epitaxy,
Deposition masks and
resists for High
Density chips
High Speed Testing
equipment | Standard Cell
S.W.
Simulation and
modeling
HDL (High-
Level
Development
Language)
CAE and ATE | WA IL Cat 3 | | COMPOUND
SEMICONDUCTOR
ICS | ≥ 1300 equivalent (2 input) gates ≥ 1.2 GHz toggle frequency | Compound materials (semiconductor, e.g. III/V and II/VI) | Lithography, Epitaxy, Deposition masks and resists for High Density chips High Speed Testing equipment Chip probing Modified for compound materials | CAE and ATE | WA IL Cat 3 | **Table 5.5-1. Microelectronics Militarily Critical Technology Parameters (Continued)** | TECHNOLOGY | Militarily Critical Parameters
Minimum Level to Assure US
Superiority | Critical Materials | Unique Test,
Production, and
Inspection
Equipment | Unique Software and Parameters | Control
Regimes | |---|---|---|--|---|--------------------| | MULTICHIP
MODULES
(MCMS) | 270 watts/meter/ °K heat dissipation Dielectric constant of K = 5.4 hermeticity, etc. | Matched substrate material thermoconductivity, heat transfer and strength | None identified | MCM board
station software
CAE and ATE | WA IL Cat 3 | | DIAMOND
SUBSTRATES
FOR IC
PACKAGES | Heat dissipation
700–1500 watts/meter/ °K | Diamond films Diamond substrates | CVD process | None identified | WA IL Cat 3 | | DIGITAL GATE
ARRAYS
(SILICON) | ≥ 150,000 equivalent (2 input) gates ≥ 100 MHz toggle rate | Matched
thermoconductivity,
heat transfer and
strength | Lithography, Epitaxy, Deposition masks and resists for High Density chips High Speed Testing equipment | HDL (High-Level
Development
Language)
Standard Cell
S.W.
CAE and ATE | WA IL Cat 3 | # **SECTION 5.6—OPTO-ELECTRONICS** #### **OVERVIEW** This section focuses on Opto-Electronics (OE) (which includes electro-optics and optronics) devices, components, and systems that are used in signal processing, image processing, or computing, and the switching, interconnection, and related devices associated with these functions. What distinguishes these from other signal and image processors is that they utilize photons as the information carrying form of energy. The OE devices covered in this section can be broadly broken into two categories: analog and digital. By and large, the only technologies that have developed sufficiently to be considered militarily critical are of the analog type. Real-time analog optical processing is employed in correlators, spectrum analyzers, and in some target recognition devices by the military. Digital optical processing is still in the emerging state and, although there are many instances of its use in military systems, it will be some time before it reaches its potential. While there are important military applications of OE technologies, most of the underlying technology and device development is being driven by high-volume commercial applications. In fact, many important military applications are depending upon commercial market forces to develop the underlying technology and devices sufficiently to meet future military needs. Table 5.6-1. Opto-Electronics Militarily Critical Technology Parameters | TECHNOLOGY | Militarily Critical Parameters
Minimum Level to Assure US
Superiority | Critical Materials | Unique Test,
Production, and
Inspection
Equipment | Unique Software and Parameters | Control
Regimes | |---|---|---|--|--------------------------------|--------------------| | SIGNAL PROCESSORS, ACOUSTO-OPTIC BRAGG CELLS | Bandwidth > 1 GHz
Dynamic range > 60 dB
Time bandwidth > 1000 | Gallium
phosphide | Growing gallium phosphide boules | None identified | WA IL Cat 3 | | SIGNAL PROCESSORS, ACOUSTO-OPTIC 1-D DETECTOR ARRAYS | Bandwidth > 1 GHz
> 1024 elements
Readout < 10 microseconds | None identified | None identified | None identified | WA IL Cat 3 | | SIGNAL PROCESSORS, ACOUSTO-OPTIC 2-D DETECTOR ARRAYS | 1024 ×1024 minimum array
300 frames/sec minimum
40 dB dynamic range minimum | None identified | None identified | None identified | WA IL Cat 3 | | PHASED ARRAYS, OPTICAL CONTROL- BEAMFORMING TECHNIQUES | Bandwidth > 10% for L band and X-band operation. | Indium
phosphide and
related III-V
semiconductor
alloys | None identified | None identified | WA IL Cat 3 | | FIBEROPTIC
LINES, HIGH-
SPEED ANALOG | Bandwidth > 15 GHz
Dynamic Range > 120 dB/Hz
Noise figure (< 5 dB) | Indium
phosphide and
related III-V
semiconductor
alloys | None identified | None identified | WA IL Cat 3 | | FIBEROPTIC LINKS, HIGH- SPEED ANALOG- DIRECTLY MODULATED LASER DIODES | RIN (Relative Intensity Noise)
(< -140 dB/Hz)
Modulation rate > 15 GHz | Indium
phosphide and
related III-V
semiconductor
alloys | None identified | None identified | WA IL Cat 3 | Table 5.6-1. Opto-Electronics Militarily Critical Technology Parameters (Continued) | TECHNOLOGY | Militarily Critical Parameters
Minimum Level to Assure US
Superiority | Critical Materials | Unique Test,
Production, and
Inspection
Equipment | Unique Software and Parameters | Control
Regimes | |------------------|---|--------------------|--|--------------------------------|--------------------| | FIBEROPTIC | Power > 150 mW into single- | Indium | None identified | None identified | WA IL Cat 3 | | LINKS, HIGH- | mode fiber | phosphide and | | | | | SPEED ANALOG | | related III-V | | | | | MICROCHIP SOLID- | | semiconductor | | | | | STATE LASERS | | alloys | | | | | FIBEROPTIC | Power handling > 150 mW | Lithium niobate, | None identified | None identified | WA IL Cat 3 | | LINKS, HIGH- | Modulation rate > 15 GHz | lithium tantalate | | | | | SPEED ANALOG | | | | | | | WAVEGUIDE | | | | | | | MODULATORS | | | | | | | FIBEROPTIC | Power handling > 150 mW | Low-temperature | None identified | None identified | WA IL Cat 3 | | LINKS, HIGH- | Frequency response > 94 GHz | gallium arsenide, | | | | | SPEED ANALOG | | low temperature | | | | | HIGH-SPEED | | indium-gallium- | | | | | DETECTORS | | arsenide | | | |